You are here: Home page > Electricity and electronics > Resistors

Typical wirewound resistor


by Chris Woodford. Last updated: May 19, 2014.

When you first learn about electricity, you discover that materials fall into two basic categories called conductors and insulators. Conductors (such as metals) let electricity flow through them; insulators (such as plastics and wood) generally do not. But nothing's quite so simple, is it? Any substance will conduct electricity if you put a big enough voltage across it: even air, which is normally an insulator, suddenly becomes a conductor when a powerful voltage builds up in the clouds—and that's what makes lightning. Rather than talking about conductors and insulators, it's often clearer to talk about resistance: the ease with which something will let electricity flow through it. A conductor has low resistance, while an insulator has much higher resistance. Devices called resistors let us introduce precisely controlled amounts of resistance into electrical circuits. Let's take a closer look at what they are and how they work!

Photo: A typical resistor used in an electronic circuit. It works by converting electrical energy into heat, which is dissipated into the air.

What is resistance?

Electricity flows through a material carried by electrons, tiny charged particles inside atoms. Broadly speaking, materials that conduct electricity well are ones that allow electrons to flow freely through them. In metals, for example, the atoms are locked into a solid, crystalline structure (a bit like a metal climbing frame in a playground). Although most of the electrons inside these atoms are fixed in place, some can swarm through the structure carrying electricity with them. That's why metals are good conductors: a metal puts up relatively little resistance to electrons flowing through it. Plastics are entirely different. Although often solid, they don't have the same crystalline structure. Their molecules (which are typically very long, repetitive chains called polymers) are bonded together in such a way that the electrons inside the atoms are fully occupied. There are, in short, no free electrons that can move about in plastics to carry an electric current. Plastics are good insulators: they put up a high resistance to electrons flowing through them.

This is all a little vague for a subject like electronics, which requires precise control of electric currents. That's why we define resistance more precisely as the voltage in volts required to make a current of 1 amp flow through a circuit. If it takes 500 volts to make 1 amp flow, the resistance is 500 ohms (written 500 Ω). You might see this relationship written out as a mathematical equation:

V = I × R

This is known as Ohm's Law for German physicist Georg Simon Ohm (1789–1854).

Resistance is useless?

Photo an an electric incandescent lamp showing the filament in extreme closeup.

How many times have you heard bad guys say that in movies? It's often true in science as well. If a material has a high resistance, it means electricity will struggle to get through it. The more the electricity has to struggle, the more energy is wasted. That sounds like a bad idea, but sometimes resistance is far from "useless" and actually very helpful.

In an old-style light bulb, for example, electricity is made to flow through an extremely thin piece of wire called a filament. The wire is so thin that the electricity really has to fight to get through it. That makes the wire extremely hot—so much so, in fact, that it gives off light. Without resistance, light bulbs like this wouldn't function. Of course the drawback is that we have to waste a huge amount of energy heating up the filament. Old-style light bulbs like this make light by making heat and that's why they're called incandescent lamps; newer energy-efficient light bulbs make light without making much heat through the entirely different process of fluorescence.

Photo: The filament inside an old-style light bulb. It's a very thin wire with a reasonably high resistance. It's designed to get hot so it glows brightly and gives off light.

The heat that filaments make isn't always wasted energy. In appliances like electric kettles, electric radiators, electric showers, coffee makers, and toasters, there are bigger and more durable versions of filaments called heating elements. When an electric current flows through them, they get hot enough to boil your water or cook your bread. In heating elements, at least, resistance is far from useless.

Variable resistor from a radio volume control.

Resistance is also useful in things like transistor radios and TV sets. Suppose you want to lower the volume on your TV. You turn the volume knob and the sound gets quieter—but how does that happen? The volume knob is actually part of an electronic component called a variable resistor. If you turn the volume down, you're actually turning up the resistance in an electrical circuit that drives the TV's loudspeaker. When you turn up the resistance, the electric current flowing through the circuit is reduced. With less current, there's less energy to power the loudspeaker—so it sounds much quieter.

Photo: This variable resistor is the volume control from a transistor radio.

How resistors work

Inside a wirewound resistor

People who make electric or electronic circuits to do particular jobs often need to introduce precise amounts of resistance. They can do that by adding tiny components called resistors. A resistor is a little package of resistance: wire it into a circuit and you reduce the current by a precise amount. From the outside, all resistors look more or less the same. As you can see in the top photo on this page, a resistor is a short, worm-like component with colored stripes on the side. It has two connections, one on either side, so you can hook it into a circuit.

What's going on inside a resistor? If you break one open, and scratch off the outer coating of insulating paint, you might see a ceramic rod running through the middle with copper wire wrapped around the outside. A resistor like this is described as wire-wound. The number of copper turns controls the resistance very precisely: the more copper turns, and the thinner the copper, the higher the resistance. In smaller-value resistors, designed for lower-power circuits, the copper winding is replaced by a spiral pattern of carbon. Resistors like this are much cheaper to make and are called carbon-film.

Photo: Inside a wire-wound resistor. Break one in half, scratch away the paint, and you can clearly see the ceramic core and the copper wire wrapped around it.

Resistor color codes

Resistor color coding bands: 1000 ohm resistor example.

You can figure out the resistance of a resistor from the pattern of colored bands.

  1. On most resistors, you'll see there are three rainbow-colored bands, then a space, then a fourth band colored brown, red, gold, or silver.
  2. Turn the resistor so the three rainbow bands are on the left.
  3. The first two of the rainbow bands tell you the first two digits of the resistance. Suppose you have a resistor like the one shown here, with colored bands that are brown, black, and red and a fourth golden band. You can see from the color chart below that brown means 1 and black means 0, so the resistance is going to start with "10". The third band is a digital multiplier: it tells you how much to multiply the first two numbers by. Red means 2, so we multiply 10 by 100 and get 1000. Our resistor is 1000 ohms.
  4. The final band is called the tolerance and it tells you how accurate the resistance value you've just figured out is likely to be. If you have a final band colored gold, it means the resistance is accurate to within plus or minus 5 percent. So while the officially stated resistance is 1000 ohms, in practice, the real resistance is likely to be anywhere between 950 and 1050 ohms.
  5. If there are five bands instead of four, the first three bands give the value of the resistance, the fourth band is the decimal multiplier, and the final band is the tolerance. Five-band resistors quoted with three digits and a multiplier, like this, are necessarily more accurate than four-band resistors, so they have a lower tolerance value.

Resistor color code chart for resistance and tolerance

Find out more

Related articles on our site



For younger readers

For older readers

Sponsored links

Please do NOT copy our articles onto blogs and other websites

Text copyright © Chris Woodford 2008. All rights reserved. Full copyright notice and terms of use.

Follow us

Rate this page

Please rate or give feedback on this page and I will make a donation to WaterAid.

Save or share this page

Press CTRL + D to bookmark this page for later or tell your friends about it with:

Cite this page

Woodford, Chris. (2008) Resistors. Retrieved from [Accessed (Insert date here)]

More to explore on our website...

Back to top