Graphene
by Chris Woodford. Last updated: January 5, 2023.
If the 20th century was the age of plastics, the 21st century seems set to become the age of graphene—a recently discovered material made from honeycomb sheets of carbon just one atom thick. Science journals have been running out of superlatives for this wondrous stuff: it's just about the lightest, strongest, thinnest, best heat- and electricity- conducting material ever discovered. And if we're to believe the hype, it promises to revolutionize everything from computing to car tires and solar cells to smoke detectors. What is this strange and remarkable new stuff? Let's take a closer look!
Listen instead... or scroll to keep reading
Photo: Growing graphene on a platform. Photo courtesy of Argonne National Laboratory and US Department of Energy published on Flickr.
Sponsored links
Contents
What is graphene?
In school you probably learned that carbon comes in two basic but startlingly different forms (or allotropes), namely graphite (the soft, black stuff in pencil "leads") and diamond (the super-hard, sparkly crystals in jewelry). The amazing thing is that both these radically different materials are made of identical carbon atoms. So why is graphite different to diamond? The atoms inside the two materials are arranged in different ways, and this is what gives the two allotropes their completely different properties: graphite is black, dull, and relatively soft (soft and hard pencils mix graphite with other materials to make darker or fainter lines); diamond is transparent and the hardest natural material so far discovered.
If that's what you learned in school, you probably finished your studies quite a while ago, because in the last few years scientists have discovered various other carbon allotropes with even more interesting properties. There are fullerenes (discovered in 1985; hollow cages of carbon atoms, including the so-called Buckyball, Buckminsterfullerene, made from a kind of football-shaped cage of 60 carbon atoms), nanotubes (discovered in 1991; flat sheets of carbon atoms curled into amazingly thin, hollow tubes one nanometer in diameter)—and (drum roll) graphene (discovered in 2004).
Artwork: Carbon nanotubes are one of the more recently discovered forms of carbon. Each tube is about 50,000 times thinner than an average human hair. Various other names were considered for nanotubes, including microtubules, tubulins, and Iijima tubes (named for one of their discoverers).
So what exactly is graphene? Peer inside lots of familiar solid materials (including most metals) and you'll find what's known as a crystal lattice (another name for a solid's internal, crystalline structure): lots of atoms arranged in a regular, endlessly repeating, three-dimensional structure a bit like an atomic climbing frame, only instead of bars there are invisible bonds between the atoms that hold them together. Diamond and graphite both have a three-dimensional structure, though it's completely different: in diamond, the atoms are tightly bonded in three-dimensional tetrahedrons, whereas in graphite, atoms are bonded tightly in two-dimensional layers, which are held to the layers above and below by relatively weak forces.
Artworks: 1) Diamond has a strong 3D (three-dimensional) crystal lattice based on a repeating tetrahedron (left). The red blobs are the carbon atoms and the gray lines are the bonds that join them together. (Bonds are invisible, but we draw them like this so we can visualize them more easily.) 2) Graphite has a much weaker structure based on layers of tightly bonded hexagons. The layers are weakly joined to one another by van der Waals forces (blue dotted lines—only a few of which are shown for clarity).
Graphene is a single layer of graphite. The remarkable thing about it is that its crystalline structure is two-dimensional. In other words, the atoms in graphene are laid out flat, like billiard balls on a table. Just like in graphite, each layer of graphene is made of hexagonal "rings" of carbon (like lots of benzene rings connected together, only with more carbon atoms replacing the hydrogen atoms around the edge), giving a honeycomb-like appearance. Since the layers themselves are just one atom high, you'd need a stack of about three million of these layers to make graphene 1mm thick! [1]
Artwork: Graphene has a flat crystal lattice made from interlinked hexagons of carbon atoms (red blobs) tightly bonded together (black lines).
Graphene or graphenes?
People talk about "graphene" the way they talk about "plastic," but it's important to remember that scientists are working on many different kinds of graphene-based materials (just like there are many different kinds of plastics), all of which are a little bit different and designed to do different things. There are many different ways of preparing graphene, for example, and they produce different thicknesses and purities of graphene-based materials. Apart from simple, single-layer sheets—classic graphene—there are lots more complex forms, including multilayer graphene (which, confusingly, is different from graphite), quantum dots, aerogels, and superlattices. And, if that's not enough, there's potentially an infinite number of graphene-based composites and polymers. Can we really capture the richness of all this in a single word?
In this article, I've followed the convention of calling the material "graphene," but it's as well to remember that this very new, fast-evolving substance has many different angles and aspects—and the word graphene will ultimately come to refer to a very wide range of different materials. One day, it may be common to talk about "graphenes" the way we now speak of "plastics."
Photo: A pencil like this is a wooden shaft filled with a stick of soft graphite, a type of carbon made from strongly bonded layers of atoms that are very weakly held together by van der Waals forces. As you drag your pencil along the page, the thin layers of graphite shear off and stay behind, making the black line you can see. Now if you could shave off a super-thin layer of graphite, just one atom high, what you'd have would be graphene. There are tiny specks of graphene in any pencil mark like this, but since they're only one atom high, you'll be doing well to spot them!
What is graphene like?
People are discovering and inventing new materials all the time, but we seldom hear about them because they're often not that interesting. Graphene was first discovered in 2004, but what's caused such excitement is that its properties (the way it behaves as a material) are remarkable and exciting. Briefly, it's super-strong and stiff, amazingly thin, almost completely transparent, extremely light, and an amazing conductor of electricity and heat. It also has some extremely unusual electronic properties.
General properties
Graphene is an amazingly pure substance, thanks largely to its simple, orderly structure based on tight, regular, atomic bonding. Graphene is pure carbon. And, because carbon is a nonmetal, you might expect graphene to be one too. In fact, it behaves much more like a metal (though the way it conducts electricity is very different), and that's led some scientists to describe it as a semimetal or a semiconductor (a material mid-way between a conductor and an insulator, such as silicon and germanium). Even so, it's as well to remember that graphene is extraordinary—and quite possibly unique.
Strength and stiffness
If you've ever scribbled with a soft pencil (something like a 4B), you'll know that graphite is horribly soft. [2]
That's because the carbon layers inside a stick of graphite shave off very easily. But the atoms within those layers are very tightly bonded so, like carbon nanotubes (and unlike graphite), graphene is super-strong—even stronger than diamond! Graphene is believed to be the strongest material yet discovered, and is often described as "200 times stronger than steel." [3] Remarkably, it's both stiff and elastic (like rubber), so you can stretch it by an amazing amount (25 percent of its original length) without it breaking. That's because the flat planes of carbon atoms in graphene can flex relatively easily without the atoms breaking apart. [4]No-one knows quite what to do with graphene's super-strong properties, but one likely possibility is mixing it with other materials (such as plastics) to make composites that are stronger and tougher, but also thinner and lighter, than any materials we have now. Imagine an energy-saving car with super-strong, super-thin, super-light plastic body panels reinforced with graphene; that's the kind of object we might envisage appearing in a future turned upside down by this amazing material!
Thinness and lightness
Something that's only one atom thick is bound to be pretty light. Apparently, you could cover a football field with a sheet of graphene weighing just four grams—although it's pretty unlikely anyone has actually tried! [5] According to my quick calculations, that means if you could cover the entire United States with graphene, you'd only need a mass of around 1500–2000 tons. That might sound a lot, but it's only about as much as about 1500 cars—and it's completely covering one of the world's biggest countries!
Heat conductivity
As if super strength and featherweight lightness aren't enough, graphene is better at carrying heat (it has very high thermal conductivity) than any other material—better by far than brilliant heat conductors such as silver and copper, and much better than either graphite or diamond. [6] Again, we're most likely to discover the benefit of that by using graphenes in composite materials, where we could use them to add extra heat-resistance or thermal conductivity to plastics or other materials. [7]
Electrical conductivity
This is where graphene starts to get really interesting! Materials that conduct heat very well also conduct electricity well, because both processes transport energy using electrons. The flat, hexagonal lattice of graphene offers relatively little resistance to electrons, which zip through it quickly and easily, carrying electricity better than even superb conductors such as copper and almost as well as superconductors (unlike superconductors, which need to be cooled to low temperatures, graphene's remarkable conductivity works even at room temperature). Scientifically speaking, we could say that the electrons in graphene have a longer mean free path than they have in any other material (in other words, they can go further without crashing into things or otherwise being interrupted, which is what causes electrical resistance). [8] What use is this? Imagine a strong, light, relatively inexpensive material that can conduct electricity with greatly reduced energy losses: on a large scale, it could revolutionize electricity production and distribution from power plants; on a much smaller scale, it might spawn portable gadgets (such as cellphones) with much longer battery life. [9]
Electronic properties
Photos: Advances in nanotechnology, including the development of graphene, will drive faster, smaller, cheaper computers. Picture by courtesy of Argonne National Laboratory published on Wikimedia Commons under a Creative Commons Licence.
Electrical conductivity is just about "ferrying" electricity from one place to another in a relatively crude fashion; much more interesting is manipulating the flow of electrons that carry electricity, which is what electronics is all about. As you might expect from its other amazing abilities, the electronic properties of graphene are also highly unusual. First off, the electrons are faster and much more mobile, which opens up the possibility of computer chips that work more quickly (and with less power) than the ones we use today. (In 2016, MIT researchers floated the possibility of optical graphene chips that might be a million times faster than the ones we use today.) Second, the electrons move through graphene a bit like photons (wave-like particles of light), at speeds close enough to the speed of light (about 1 million meters per second, in fact) that they behave according to both the theories of relativity and quantum mechanics, where simple certainties are replaced by puzzling probabilities. That means simple bits of carbon (graphene, in other words) can be used to test aspects of those theories on the table top, instead of by using blisteringly expensive particle accelerators or vast, powerful space telescopes. [10]
Optical properties
As a general rule, the thinner something is, the more likely it is to be transparent (or translucent), and it's easy to see why: with fewer atoms to battle, photons are more likely to penetrate through thin objects than thick ones. (That's nothing like the whole story, however. The reason why you can see through thick glass but not very thin metal is quite a bit more complex than this. [11]) As you might expect, super-thin graphene, being only one atom thick, is close to transparent; in fact, graphene transmits about 97–98 percent of visible light (compared to about 80–90 percent for a basic, single pane of window glass). [12] Bearing in mind that graphene is also an amazing conductor of electricity, you can start to understand why people who make solar panels, LCDs, and touchscreens are getting very excited: a material than combines amazing transparency, superb electrical conductivity, and high strength is a perfect starting point for applications like these. [13]
Impermeability
Sheets of graphene have such closely knit carbon atoms that they can work like super-fine atomic nets, stopping other materials from getting through. That means graphene is useful for trapping and detecting gases—but it might also have promising applications holding gases (such as hydrogen) that leak relatively easily from conventional containers. One of the drawbacks of using hydrogen as a fuel (in electric cars) is the difficulty of storing it safely. Graphenes, potentially, could help to make fuel-cell cars running on hydrogen a more viable prospect. [14]
On the other hand, if you pepper tiny holes into graphene to make it porous, you get make a meshlike material called holey graphene that can work like an electrical semiconductor or a very fine, physical sieve. Still very new, it's already starting to find exciting applications in new forms of energy storage (such as supercapacitors) and water filters that could reduce pressure on the planet by helping us turn ocean water into safe, clean drinking water.
Artwork: Ordinary graphene (bottom) and porous, holey graphene (top), which has a variety of improved properties. Artwork courtesy of NASA.