You are here: Home page > Home life > Heat insulation
Advertisement

Aerogel thermal insulation acting as a barrier between a gas flame and some wax crayons, by NASA.

Heat insulation

by Chris Woodford. Last updated: May 16, 2014.

If you're out and about in winter and you're feeling cold, chances are you'll put on a hat or another layer of clothing. If you're sitting at home watching television and the same thought strikes you, you're more likely to turn on your heating. Now what if we switched the logic around? What if you ate more food whenever you felt cold and stuck a woolly hat on top of your house each winter? The first wouldn't make much difference: food supplies the energy your body needs, but it doesn't necessarily make you any warmer right there and then. But putting "clothes" on your house—by insulating it—is actually a very good idea: the more heat insulation you have, the less energy escapes, the lower your fuel bills, and the more you help the planet in the fight against global warming. Let's take a closer look!

Photo: Aerogel is one of the world's newest and most exciting insulating materials. Put a slab of aerogel between a gas flame and some wax crayons and the crayons won't melt: the aerogel stops virtually any heat flowing through. One day, we could make all our windows out of aerogel—but scientists have to figure out how to make it transparent first! Photo by courtesy of NASA Jet Propulsion Laboratory (JPL).

How does heat escape from your home?

Where does heat escape from a home? Shows rough percentage heat losses from the walls, roof, floor, doors, and windows.

Why does heat escape from your home in the first place? To understand that, it helps to know a little bit about the science of heat. As you probably know, heat travels in three different ways by processes called conduction, convection, and radiation. (If you're not sure of the difference, take a look at our main article on heat for a quick recap.) Knowing about these three types of heat flow, it's easy to see lots of ways in which your cozy warm home is leaking heat to the freezing cold world all around it:

  1. Your house is standing on cold soil or rock, so heat flows down directly into the Earth by conduction.
  2. Heat travels by conduction through the solid walls and roof of your home. On the outside, the outer walls and the roof tiles are hotter than the atmosphere around them, so the cold air near to them heats up and flows away by convection.
  3. Your house may seem like a big complex space with lots going on inside in but, from the point of view of physics, it's exactly the same as a camp fire in the middle of vast, cold surroundings: it constantly radiates heat into the atmosphere.

Artwork: Where does the heat escape in a typical home? It varies from building to building, but these are some rough, typical estimates. The walls give the biggest heat loss, followed by the doors and windows, the roof, and the floor.

The more heat escapes from your home, the colder it gets inside, so the more you have to use your heating and the more it costs you. The more you use your heating, the more fuel has to be burned somewhere (either in your own home or in a power plant up-state), the more carbon dioxide gas is produced, and the worse global warming becomes. It's far better to insulate your home and reduce the heat losses. That way, you'll need to use your heating much less. The great thing about home insulation is that it usually pays for itself quite quickly in lower fuel bills. Before long, it's even making you money! And it's helping the planet too.

How heat insulation works

A sample of compact vacuum insulation CVI material developed by the US DOE NREL

Suppose you've just poured yourself a hot cup of coffee. A fundamental rule of physics called the second law of thermodynamics says it's never going to stay that way: pretty soon, it's going to be a cold cup of coffee instead. What can you do to postpone the inevitable? Somehow you need to stop heat escaping by conduction, convection, and radiation.

The first thing you could do is put a lid on. By stopping hot air rising and falling above the cup, you'll be cutting down heat losses by convection. Some heat is also going to be disappearing through the bottom of the hot cup into the cold table it's standing on. What if you could surround the cup with a layer of air? Then no conduction could take place. So maybe have a second cup outside the first one with an air gap (or, better still, a vacuum) in between. That's convection and conduction just about licked, but what about radiation? If you were to wrap aluminum foil round the outer cup, any infrared radiation the hot coffee gives off will be reflected back inside it, so that should solve that problem too. Apply all three of those solutions—a lid, an air gap, and a metallic coating—and what you have is effectively a vacuum flask: a really effective way of keeping hot drinks hot. (It's also good at keeping cold drinks cold, because it stops heat flowing in just as effectively as it stops heat flowing out.) It's worth noting, just in passing, that most takeaway stores give you hot drinks in nasty-tasting polystyrene containers. Ever wondered why? The answer is simply that polystyrene (and especially expanded polystyrene, filled with air—the crumbly kind you get in packaging materials) is a superb heat insulator (check out the table below and you'll see it rates better than double- and triple-glazing).

Photo: Vacuums coated with metal are among the best insulators, but they're not always suitable for everyday uses. In the late 1980s, two scientists working at the National Renewable Energy Laboratory, David Benson and Thomas Potter, developed a more practical way to use this technology called compact vacuum insulation (CVI). The outer metal plates, held apart by ceramic spacers, seal an insulating vacuum inside. Photo by Warren Gretz courtesy of US Department of Energy/National Renewable Energy Laboratory (DOE/NREL).

The best way to insulate your home

Now, unfortunately, we can't build our houses exactly like a vacuum flask. We have to have air to breathe, so a vacuum's out of the question. Most people like windows too, so living in a sealed box lined with metallic foil isn't that practical either. But the basic principle of cutting down heat losses from conduction, convection, and radiation still applies nevertheless.

An insulated wall in an eco home

Walls

Many homes, for example, have what are called cavity walls with two layers of brick or blocks between the inner rooms and the world outside and an air gap between the walls. The air gap reduces heat losses from the walls by both conduction and convection: conduction, because heat can't conduct through gases; convection, because there's relatively little air between the walls and it's sealed in, so convection currents can't really circulate.

By itself, air isn't the best insulating material to have between your walls. It's actually far more effective to have the cavities in your walls filled with expanding foam or another really good insulating material that stops heat escaping. Cavity-wall insulation, as this is known, takes only hours to install and costs relatively little. Cavity walls are often filled with loosely packed, air-filled materials such as vermiculite, shredded recycled paper, or glass fibers (specially treated to make them fireproof). These materials work in exactly the same way that your clothes work: extra layers of clothing make you warmer by trapping air—and it's the air, as much as (or more than) the clothes themselves, that stops heat escaping.

Photo: Reduce the energy losses from your home by filling the walls full of foam insulation. This eco-home is being insulated with Icynene, a plastic insulation material similar to that used in pillows and mattresses. Photo by Paul Norton courtesy of US Department of Energy/National Renewable Energy Laboratory (DOE/NREL).

Which are the best home insulation materials?

Floor insulation materials with R-30 insulating value

Some forms of insulation are better than others, but how can you compare them? The best way is to look out for a measurement called R-value. The R-value of a material is its thermal resistance: how effectively it resists heat flowing through it. The bigger the value, the greater the resistance, and the more effective the material is as a heat insulator.

Photo: You can reduce heat losses through your floor by building your home on a thick insulating material like this, which has an R value of 30. Photo by Paul Norton courtesy of US Department of Energy/National Renewable Energy Laboratory (DOE/NREL).

Roof

Since warm air rises, plenty of heat escapes through the roof of your home (just as lots of heat escapes from your body through your head, if you don't wear a hat). Most people also have insulation inside the roof (loft area) of their homes, but there's really no such thing as too much insulation. Loft insulation is generally made from the same materials as cavity-wall fillings—such things as rock wool and fiberglass.

Radiation losses

Wall and roof insulation cuts down on heat losses by convection and conduction, but what about radiation? In a vacuum flask, that problem's solved by having a reflective metallic lining—and the same idea can be used in homes too. Some homeowners install thin sheets of reflective metallic aluminum in the walls, floors, or ceilings to cut down on radiation losses. Good products of this kind can reduce radiation losses by as much as 97 percent. You can find out more by searching on "reflective insulation" or "radiant barrier" in one of the Google boxes on this page.

Double glazing air gap reduces heat loss.

That still leaves the windows as a major source of heat loss, but there are ways to tackle that problem too. Double-glazed windows have two panes of glass separated by a sealed air gap. The air stops heat losses by conduction and convection, while the extra pane of glass reflects more light and heat radiation back into your home and reduces heat losses that way too. You can have your windows treated with a very thin reflective metallic coating or made from special thermal glazing (such as Pilkington-K, which traps heat a bit like a greenhouse) that reduces heat losses even further. (Read more in our main article on heat reflective windows.)

Generally, the more insulation you have, the warmer you'll be. But the amount you need varies depending on where you live and how cold it gets.

Photo: Double glazing: the air gap between the two panes of glass provides heat insulation—and soundproofing too. Photo by Warren Gretz courtesy of US Department of Energy/National Renewable Energy Laboratory (DOE/NREL).

Find out more

On this website

Books and reports

On other websites

Sponsored links

Please do NOT copy our articles onto blogs and other websites

Text copyright © Chris Woodford 2008, 2011. All rights reserved. Full copyright notice and terms of use.

Follow us

Rate this page

Please rate or give feedback on this page and I will make a donation to WaterAid.

Save or share this page

Press CTRL + D to bookmark this page for later or tell your friends about it with:

Cite this page

Woodford, Chris. (2008) Heat insulation. Retrieved from http://www.explainthatstuff.com/heatinsulation.html. [Accessed (Insert date here)]

More to explore on our website...

Back to top