You are here: Home page > Communications > Antennas and transmitters

Parabolic satellite dish at Canberra, Australia

Antennas and transmitters

by Chris Woodford. Last updated: February 12, 2015.

Imagine holding out your hand and catching words, pictures, and information passing by. That's more or less what an antenna (sometimes called an aerial) does: it's the metal rod or dish that catches radio waves and turns them into electrical signals feeding into something like a radio or television or a telephone system. Antennas like this are sometimes called receivers. A transmitter is a different kind of antenna that does the opposite job to a receiver: it turns electrical signals into radio waves so they can travel sometimes thousands of kilometers around the Earth or even into space and back. Antennas and transmitters are the key to virtually all forms of modern telecommunication. Let's take a closer look at what they are and how they work!

Photo: The enormous 70m (230ft) Canberra deep dish satellite antenna in Australia. Photo by courtesy of Great Images in NASA.

How antennas work

Suppose you're the boss of a radio station and you want to transmit your programs to the wider world. How do you go about it? You use microphones to capture the sounds of people's voices and turn them into electrical energy. You take that electricity and, loosely speaking, make it flow along a tall metal antenna (boosting it in power many times so it will travel just as far as you need into the world). As the electrons (tiny particles inside atoms) in the electric current wiggle back and forth along the antenna, they create invisible electromagnetic radiation in the form of radio waves. These waves travel out at the speed of light, taking your radio program with them. What happens when I turn on my radio in my home a few miles away? The radio waves you sent flow through the metal antenna and cause electrons to wiggle back and forth. That generates an electric current—a signal that the electronic components inside my radio turn back into sound I can hear.

Artwork showing how antennas transmit and receive radio waves

Artwork: How a transmitter sends radio waves to a receiver. 1) Electricity flowing into the transmitter antenna makes electrons vibrate up and down it, producing radio waves. 2) The radio waves travel through the air at the speed of light. 3) When the waves arrive at the receiver antenna, they make electrons vibrate inside it. This produces an electric current that recreates the original signal.

Transmitter and receiver antennas are often very similar in design. For example, if you're using something like a satellite phone that can send and receive a video-telephone call to any other place on Earth using space satellites, the signals you transmit and receive all pass through a single satellite dish—a special kind of antenna shaped like a bowl (and technically known as a parabolic reflector, because the dish curves in the shape of a graph called a parabola). Often, though, transmitters and receivers look very different. TV or radio broadcasting antennas are huge masts sometimes stretching hundreds of meters/feet into the air, because they have to send powerful signals over long distances. But you don't need anything that big on your TV or radio at home: a much smaller antenna will do the job fine.

How long does an antenna have to be?

Typical telescopic FM radio antenna

Photo: This telescopic FM radio antenna pulls out to a length of about 1-2m (3-6ft or so), which is roughly half the length of the radio waves it's trying to capture.

The simplest antenna is a single piece of metal wire attached to a radio. The first radio I ever built, when I was 11 or 12, was a crystal set with a long loop of copper wire acting as the antenna. I ran the antenna right the way around my bedroom ceiling, so it must have been about 20–30 meters (60–100 ft) long in all!

Most modern transistor radios have at least two antennas. One of them is a long, shiny telescopic rod that pulls out from the case and swivels around for picking up FM (frequency modulation) signals. The other is an antenna inside the case, usually fixed to the main circuit board, and it picks up AM (amplitude modulation) signals. (If you're not sure about the difference between FM and AM, refer to our radio article.)

Why do you need two antennas in a radio? The signals on these different wave bands are carried by radio waves of different frequency and wavelength. Typical AM radio signals have a frequency of 1000 kHz (kilohertz), while typical FM signals are about 100 MHz (megahertz)—so they vibrate about a hundred times faster. Since all radio waves travel at the same speed (the speed of light, which is 300,000 km/s or 186,000 miles per second), AM signals have wavelengths about a hundred times bigger than FM signals. You need two antennas because a single antenna can't pick up such a hugely different range of wavelengths. It's the wavelength (or frequency, if you prefer) of the radio waves you're trying to detect that determines the length of the antenna you need to use. Broadly speaking, the length of the antenna has to be about half the wavelength of the radio waves you're trying to receive (it's also possible to make antennas that are a quarter of the wavelength, though we won't go into that here).

The long and short of it

typical AM radio antenna

Photo: The AM antenna inside a typical transistor radio. Note how the pink-colored wire that makes up the antenna is wrapped around a thick ferrite core (the black rod).

Let's see how that works for FM. If I try to listen to a typical radio broadcast on an FM frequency of 100 MHz (100,000,000 Hz), the waves carrying my program are about 3m (10ft) long. So the ideal antenna is about 1.5m (4ft) or so long. A shorter antenna will still pick up signals, but a longer one will be more effective. That's why you often have to pull out your antenna on a radio: folded in, it's not long enough to resonate (electrically oscillate) with the radio waves you're trying to capture.

Typical short cellphone antenna

Now for AM, the waves are 100 times greater, so how come you don't need an antenna that's 300m (0.2 miles) long to pick them up? Well you do need a big antenna, you just don't know it's there! The AM antenna inside a transistor radio is a huge length of thin wire wrapped around a ferrite (iron-based magnetic) core, which greatly boosts the incoming signals, and that means it can be much smaller and more compact but still pick up the signals you need.

So far so good, but what about cellphones? How come they need only short and stubby antennas like the one in this photo? Cellphones use radio waves too, also traveling at the speed of light, and with a typical frequency of 800 MHz (roughly ten times greater than FM radio). That means their wavelength is about 10 times shorter than FM radio, so they need an antenna roughly one tenth the size.

Photo: Cellphones have particularly compact antennas. Older ones (like the Motorola on the left) have stubby antennas or ones that pull out telescopically. (The antenna is the bit my finger is pointing to.) Newer cellphones (like the Nokia model on the right) have longer antennas built completely inside the case.

Types of antennas

Telecommunications workers climb up the metal framework of an antenna

The simplest radio antennas are just long straight rods. Many indoor TV antennas take the form of a dipole: a metal rod split into two pieces and folded horizontally so it looks a bit like a person standing straight up with their arms stretched out horizontally. More sophisticated outdoor TV aerials have a number of these dipoles arranged along a central supporting rod. Other designs include circular loops of wire and, of course, parabolic satellite dishes.

Photo:Right: US military telecommunications workers climb the framework of a different kind of antenna shaped like a tower. Photo by Pierre-Etienne Courtejoie courtesy of US Army.

Three features of antennas are particularly important, namely their directionality, gain, and bandwidth. Dipoles are very directional: they pick up incoming radio waves traveling at right angles to them. That's why a TV antenna has to be properly mounted on your home, and facing the correct way, if you're going to get a clear picture. The telescopic antenna on an FM radio is less obviously directional, especially if the signal is strong: if you have it pointed straight upward, it will capture good signals from virtually any direction. The ferrite AM antenna inside a radio is much more directional. Listening to AM, you'll find you need to swivel your radio around until it picks up a really strong signal. (Once you've found the best signal, try turning your radio through exactly 90 degrees and notice how the signal often falls off almost to nothing.)

The gain of an antenna is a very technical measurement but, broadly speaking, boils down to the amount by which it boosts the signal. TVs will often pick up a poor, ghostly signal even without an antenna plugged in. That's because the metal case and other components act as a basic antenna, not focused in any particular direction, and pick up some kind of signal by default. Add a proper directional antenna and you'll gain a much better signal.

An antenna's bandwidth is the range of frequencies (or wavelengths, if you prefer) over which it works effectively. The broader the bandwidth, the greater the range of different radio waves you can pick up. That's helpful for something like television, where you might need to pick up many different channels, but much less useful for telephone, cellphone, or satellite communications where all you're interested in is a very specific radio wave transmission on a fairly narrow frequency band.

Find out more

On this website



Sponsored links

Please do NOT copy our articles onto blogs and other websites

Text copyright © Chris Woodford 2008, 2014. All rights reserved. Full copyright notice and terms of use.

Follow us

Rate this page

Please rate or give feedback on this page and I will make a donation to WaterAid.

Share this page

Save this page for later or share it by bookmarking with:

Cite this page

Woodford, Chris. (2008) Antennas and transmitters. Retrieved from [Accessed (Insert date here)]

More to explore on our website...

Back to top