When you hear weather forecasters warning of how fast the wind is
going to blow, do you ever stop to think how they're going to measure it? Wind isn't
something you can see very easily, so you can hardly time it with a
stopwatch like you'd measure the speed of an
Olympic sprinter or a race car! Fortunately, scientists are amazingly
inventive people and they've come up with some pretty clever ways of
measuring wind speed with gadgets called anemometers.
Let's take a closer look at how they work!
Photo: Measuring wind speed with a three-cup, handheld anemometer. The square plate at the back is a vane that aligns itself with the wind so you can measure wind direction too. This model, used by the US Navy, is an Ames RVM 96 B capable of measuring wind speeds up to about 50 m/s (180 km/h or 112 mph). Photo by Spencer Roberts courtesy of US Navy and
Wikimedia Commons.
Some people think wind turbines are
unsafe because gales and storms could make them
spin dangerously fast. That's not actually true: all large wind
turbines are fitted with brakes that stop
them rotating if the wind
blows too hard (and they have built-in anemometers to measure the speed
as well). But it's certainly true that wind turbines turn
faster—and generate more electricity—the
harder the wind is blowing. There you have a clue to how a basic
anemometer could work.
Suppose you build yourself a miniature, table-top wind turbine and
connect it to an electricity generator (effectively an electric
motor wired up backwards so it makes an electric current when you spin its central
axle around). The faster the rotor
blades turn, the quicker the generator spins, and the higher the electric current it will produce.
So if you measure the current, you have a basic way of measuring the
wind speed. You have to calibrate an
instrument like this before you use it, of course. In other words, you'd need to know how
much current is generated by a few winds of known speed. That would help
you figure out the mathematical relationship between wind speed and
electric current so you could figure out the speed of an unknown wind
simply by measuring the current.
Sponsored links
Mechanical anemometers
Some of the simplest anemometers work in exactly this way. They're little more than an electricity generator mounted in a sealed-up metal cylinder with an axle protruding upward from it. On top of the axle, there are several large cups that catch the wind and make the generator spin around. Propeller anemometers work in much the same way. Like miniature wind turbines, they use small propellers to power their generators instead of spinning cups. Some anemometers have what looks like a small fan in place of the cups or propeller. As the wind blows, it spins the fan blades and a tiny generator to which they're attached, which works a bit like a bicycle dynamo. The generator is connected to an electronic circuit that gives an instant readout of the wind speed on a digital display.
Photo: A handheld digital anemometer from Kestrel. The fan at the top generates magnetic impulses, which electronic circuits inside convert into a precise wind speed.
The Kestrel also measures wind direction, temperature, and assorted other weather data and can export
the logs it collects to a nearby computer or smartphone. Photo by Shannon Moorehead courtesy of US Air Force and DVIDS.
Some cup-style anemometers dispense with the electricity generator and, instead, count how many times
the cups or fan blades rotate each second. In one typical design, some of the fan blades have tiny magnets mounted on them and, each time they make a single rotation, they move past a magnetic detector called a reed switch.
When a magnet is nearby, the reed switch closes and generates a brief pulse of
electric current, before opening again when the magnet goes away. This kind of
anemometer effectively makes a series of electric pulses at a rate that is proportional to the wind speed.
Count how often the pulses come in and you can figure out the wind speed from that.
Artwork: How a simple reed-switch anemometer works. You can see it's divided into three main parts: the vane on top (blue), which indicates the wind direction; the rotating cups (red); and the stationary housing that you hold underneath (green). In the red cup section, there's a magnet built into one side (yellow). As the wind spins the cups, the magnet rotates past a couple of reed switches (orange) mounted in the stationary bottom section (green). These send impulses to a circuit that calculates the wind speed. From
US Patent 5,361,633: Method and apparatus for wind speed and direction measurement by William J. Peet II, November 8, 1994, courtesy US Patent and Trademark Office.
In another design, known as optoelectronic, spinning cups turn a kind of paddle wheel inside the metal canister underneath. Each time the paddle wheel rotates, it breaks a light beam and generates a pulse of current. An electronic circuit times the pulses and uses them to calculate the wind speed. The anemometers shown in our photos up above,
made by Ames of Slovenia, work in roughly this way.
Photo: The main parts of the handheld, optoelectronic Ames anemometers used by the US Navy. The case is made of lightweight aluminum. Photo by Spencer Roberts courtesy of US Navy.
Ultrasonic anemometers
You probably know that sound travels by making air molecules move
back and forth. It's fairly obvious that the speed of the wind affects
the speed at which sounds travels. If you're shouting to a friend who's down-wind
of where you're standing, you'll hear their voice slightly sooner
than they would if there were no wind at all. Similarly, if they
shout back, you'll hear their voice slightly later—because the
sound waves they generate have to fight against the wind to reach
you. The same idea is used in an ingenious way in ultrasonic anemometers, which measure wind speed using high-frequency sound
(generally above the range humans can hear).
An ultrasonic anemometer has two or three pairs of sound transmitters and
receivers mounted at right angles to one another. Stand it in the wind and each
transmitter constantly beams high-frequency sound to its respective
receiver. Electronic circuits inside measure the time it takes for
the sound to make its journey from each transmitter to the corresponding receiver. Depending on how the wind
blows, it will affect some of the sound beams more than the others,
slowing it down or speeding it up very slightly. The circuits measure
the difference in speeds of the beams and use that to figure out how
fast the wind is blowing.
Photo: This wind-measuring mast has several anemometers mounted on it. In the center, you can just make out an ultrasonic anemometer. There are also a couple of propeller anemometers here, looking like tiny wind turbines. Photo by Warren Gretz courtesy of US Department of Energy/NREL.
Artwork: An ultrasonic anemometer works by sending high-frequency sound waves (typically from about 10kHz up to 200kHz) between transmitters (blue) and receivers (pink) on three or four probes mounted on a central mast. The sound beams travel at different angles and directions, which makes it possible to calculate the wind speed very accurately.
Unlike rotating instruments, ultrasonic instruments have no moving parts, so they're less likely to fail mechanically and don't suffer quite as much from problems like freezing temperatures; they also give more accurate measurements in very high winds.
You can make a similar—but much more precise—measurement using beams
of light instead of ultrasound. The basic
principle is called interferometry, and it can be used to measure all kinds of different things with incredible precision. How does it work? You take a
laser beam and split it in half using a semi-silvered
mirror (a mirror partly coated with silver
so it allows half the light to pass through and reflects the rest away).
You keep one part of the beam intact (let's call it the reference beam) and allow
the other part of the beam (let's call it the measurement beam) to be
affected by the thing you want to measure. Whatever it is will
slightly alter the phase (pattern of vibration) of the light waves in
the measurement beam, but it won't affect the waves in the reference
beam (which travel along a separate path). Now you recombine the two
laser beams. The measurement beam will be slightly out of step with the reference beam, causing a
strange light pattern to form where they meet and overlap, known as a set of interference fringes.
By measuring the spacing of the fringes, you can calculate how much the
measurement beam was affected.
When it comes to measuring air speed, you simply allow your
measurement beam to pass through a chamber where the air is moving. You could fire it
through part of a wind tunnel, for
example, or through a pipe or tube where you're studying air flow. You
need to calibrate the setup first, of course, so you know the relationship between wind
speed and the changes you observe in the interference fringes. Once
you've done that, you can use your laser anemometer to measure the
speed of any unknown air current.
Doppler laser anemometers
Given its high-precision nature, you'd use a laser interferometer
for making very precise measurements in a laboratory. But some laser anemometers
are robust enough for more general use outdoors. They send one or more safe,
infrared laser beams straight up into the air (which serve as the
reference beam) and detect the beam reflected back down from dust
particles, water droplets, and so on (which is the measurement beam).
Wind movements wobble those airborne particles around so the measurement
beam is slightly changed in frequency compared to the reference beam.
The change in frequency is called a
Doppler shift and it's much like the
way a fire engine siren changes pitch from a high note to a low note as
it speeds past you. By measuring the frequency shift, you can precisely
measure the speed of whatever caused it (in this case, the wind speed).
A typical anemometer that works in this way is the ZephIR®,
made by Natural Power.
Artwork: How a Doppler laser anemometer works. A laser (1) fires through a lens (2) into
a fluid (3), such as the wind, that you want to measure. Part of the beam fires through undisturbed (4),
while another part (5) is scattered and Doppler shifted. Mirrors (6) recombine the beams and a photodiode (7)
detects and measures them. A circuit attached to the detector figures out the wind speed from the frequency change of the
recombined beams.
Hot-wire anemometers
How many more ways of measuring the wind could there possibly be? Surprisingly, quite a few. If you're familiar with
the concept of
wind chill, you'll know that the wind cools things as it blows past them in a very predictable way.
So measuring the amount of cooling that a wind produces on an object of a certain temperature is an indirect
way to figure out the speed of that wind. This is essentially how a hot-wire anemometer works. It uses an electrically
heated piece of wire (similar to the filament in an old-fashioned light bulb or
a thin heating element) past which the wind blows. As the wire cools, its electrical
resistance changes; that can be measured (using a circuit called a Wheatstone bridge) to figure out the amount of cooling and the wind speed. Hot-wire anemometers are particularly suited for measuring turbulent air flow, and they're widely used in engineering for things like measurements of fluid flow in jet engines.
Artwork: How a hot-wire anemometer works: The cool wind (1) blows over a heated wire (2), cooling it down and changing its electrical resistance correspondingly. A Wheatstone-bridge circuit attached to the wire (3) measures its changing resistance and converts it into a more familiar measurement of wind speed.
Why you can't always measure things precisely
Measuring things is the foundation of science, but it's important
not to get carried away. With brilliantly accurate scientific
instruments, you can make measurements that have no real meaning or
value if you don't think carefully about what you're doing.
?
A good anemometer will give you a wind speed reading accurate to about ±0.5 m/s (±2km/h or ±1mph), but that's often far more accurate than you need. Remember that the wind speed
isn't constant—it's varying all the time! So unless you're in a wind tunnel, where the
speed is constant and precise measurements count, any measurement you make is going to
be, at very best, a rough guide to how fast the air is actually moving.
You'll notice that weather forecasters often take
account of this in the figures they quote. They give you a basic
wind speed (in miles or km per hour) and also tell you how high the
gust (maximum) speed is going to be too. What you have is effectively a
range of speeds that the wind is likely to reach on a particular day, but
no-one can tell you exactly how fast the air will be moving in a
certain place, because it depends so much on the local geography—the
presence of things like hills, trees, houses, valleys that funnel the
wind, and so on.
Who invented the anemometer?
Who do we credit for catching and measuring the wind? There are lots of candidates—and here are just a few of them:
The very first person
to make an anemometer—wind-measuring meter—seems to have been Italian polymath
Leon Battista
Alberti, c.1450, who developed a kind of weather vane that rotated in the wind, so measuring the force
the air exerted.
The familiar rotating-cup anemometer dates from 1846 and was developed by an Irishman
named the Reverend Thomas Romney Robinson.
Photo: The four-cup anemometer invented in 1846 by Thomas Romney Robinson.
Photo by Sean Linehan, NOS, NGS courtesy of Wikimedia Commons.
Also in the 19th century, the Cambridge polymath William Whewell (1794–1866) invented a self-recording anemometer.
In the late 1860s, as American mechanical calculator pioneer Frank Stephen Baldwin (1838–1925) recounted in a 1919 interview, he developed a device for measuring the direction (but not the speed) of the wind.
In May 1885, Scientific American carried a description of an anemometer "recently patented by Mr Eaton A. Edwards" that could measure both wind speed and direction. According to Edwards, writing in his patent, "The object of my invention is to furnish a simple and inexpensive device for determining with approximate accuracy the velocity of the Wind at the moment of observation, and particularly adapted for use of riflemen at target practice... combined with a vane, and with means for indicating the direction of the wind with reference to the target..."
It consisted of a spring-loaded "pressure disk" that the wind pushed in, so making a lever
move up and down a scale to indicate the wind speed. The whole device rotated to measure the wind angle.
Artwork: Eaton Edwards' piston anemometer and wind vane, from Scientific American, May 9, 1885, p.290.
In 1901, British meterologist William Henry Dines (1855–1927) developed
another anemometer that could measure both wind direction and speed.
Make an anemometer: The California Energy Commission explain how to measure wind speed with a few small paper cups. [Archived via the Wayback Machine.]
How Does a Wind Meter Work?: Those excellent Science Buddies explain how to measure wind speed by building your own anemometer.
A Less Mighty Wind by Peter Fairley. IEEE Spectrum, 28 December 2010. Scientists argue over whether future projections of wind speed could affect the long-term development of wind power.
"Measuring the flow of air" pp188–191 of The Forest Mimms Circuit Scrapbook. Includes how to build cup and hot-wire anemometers, with circuit diagrams.
The Measurement of Air Flow by E. Ower and R. C. Pankhurst. Pergamon Press, 1977. A classic (reprinted, though somewhat dated) text that covers various types of anemometers (mostly mechanical ones).
Videos
These are most suitable for children in the 8–12 age range:
How To Build An Anemometer: A short simple video illustrating how to build a four-cup anemometer from basic household items.
Make your own weather instruments!: Mr. McLaughlin of Bronx Prep shows his class how to make a simple weather station using basic homemade instruments.
Patents
If you'd like much more technical detail, patents are a good place to go next. I've included one representative example for each of the main types of anemometer (and you'll find lots more examples on Google Patents):
Please do NOT copy our articles onto blogs and other websites
Articles from this website are registered at the US Copyright Office. Copying or otherwise using registered works without permission, removing this or other copyright notices, and/or infringing related rights could make you liable to severe civil or criminal penalties.