You are here: Home page > Computers > Modems

US robotics 56K dialup modem


  • Tweet

by Chris Woodford. Last updated: July 17, 2016.

Want to go online? Chances are you'll be needing a modem—a device that lets your computer send signals back and forth along a telephone line. You need a different kind of modem to go online with a dialup connection, with broadband, or with a cellphone (mobile broadband). What exactly are modems and how do they work? Let's take a closer look!

Photo: A typical US Robotics (3Com) dialup modem from the late 1990s. This one communicates via V.90 at 56k bits (binary digits) per second (kbps). The little red LEDs along the front flicker on and off to tell you what the modem's doing.

What is a modem?

Telephones are amazing: they can carry the sound of your voice from one side of the world to the other in a matter of seconds by making electricity flow down a wire. Telephones are also the power behind the Internet—without them, it would be almost impossible for most of us to go online.

The marriage of the telephone (a 19th-century technology) with the computer (a 20th-century innovation) was something of a shotgun wedding. Computer technology is largely digital: it involves storing, processing, and transmitting information in the form of numbers. But telephone technology is still partly analog: information is transmitted down phone lines as continuously varying electrical signals. How, then, do digital computers communicate across analog telephone lines designed to carry speech? Simple: they use modems, devices that turn digital information into analog sound signals for the telephone journey and then turn it back again at the other end. Think of modems as translators. Computers speak digital, and telephones speak analog, so you need modems to translate between the two.

HSDPA mobile broadband modem or dongle made by ZTE

Photo (above): A state-of-the-art HSDPA broadband wireless modem (sometimes called a "dongle") made by ZTE. You need one of these to surf the Net on a cellphone network.

Suppose you want to connect your computer to an Internet Service Provider (ISP) using an ordinary phone line. The computer at your end needs a modem to modulate its digital signals (add them on top of an analog telephone signal) so they can travel down the phone line just like the sound of your voice. Once the signals have reached the other end, they have to pass through a second modem, which demodulates them (separates them out from the telephone signal and turns them back into digital form) so the ISP computer can understand them. When the ISP computer replies, it sends its signals through a modulator back down the line to you. Then a demodulator at your end turns the signals back into digital form that your computer can understand.

A box that we call a modem thus contains two different kinds of translators. There's a modulator (for transmitting digital signals out down the phone line in analog form) and a demodulator (for receiving analog signals from the phone line and turning them back into digital form)—and that's why it's called a modem.

Modulation is simply a fancy name for transmitting information by changing the shape of a waveform. If you send information by making the peaks of a wave bigger or smaller, that's called amplitude modulation or AM (because the amplitude is the size of the wave peaks); if you send information by changing how often the peaks travel, that's frequency modulation or FM (because the frequency is the number of peaks that travel per second). You may have heard the terms AM and FM before, because they describe how radio signals travel. (You can read a slightly longer explanation of modulation in our article on radio.)

Controlling modems

Think of how you use the telephone. You don't just pick up the receiver and start talking. You have to go through a series of quite orderly steps: you have to lift the receiver, wait for the dialing tone, dial each number so it's recognized, wait for the sound of the ringing at the other end, listen for the other person's voice, say hello, and then alternate your speech with theirs. If there's no answer, you have to know when to replace the receiver and hang up the call.

An old-style acoustic coupler modem with a telephone plugged in.

Photo: Modems as they used to look. This contraption is called an acoustic coupler and its built-in modem allows you to connect your computer to a network using an ordinary landline telephone. Devices like this were popular when people had phones that were hard-wired into connection boxes and couldn't be unplugged or switched for modern-style RJ11 phone jacks. Photo by courtesy of secretlondon123 published on Flickr in 2008 under a Creative Commons (BY-SA) licence.

Modems have to behave exactly the same way, exchanging information in a very orderly conversation. If you've used a dialup modem, you'll have noticed that your modem opens the line, dials the number, waits for the other modem to reply, and "handshakes", before any real data can be sent or received. If there's no reply, it'll hang up the line and tell you there's a problem. Handshaking is the initial, formal part of the conversation where two modems agree the speed at which they will talk to one another. If you have a very fast modem but your ISP has only a slow one, the two devices will be forced to communicate at the slower speed. Every dialup modem works according to a particular international standard (a number prefaced by a capital letter V)—and this tells you how quickly it sends and receives data in bits (binary digits) per second (usually abbreviated bps). The most common standards are V.22 (1200 bps), V.32 (9600 bps), V.32bis, V.33 (14,400 bps), V.34 (28,800 bps), V.34+ (33,600 bps), and V.90 (56,000 bps). The older standards, such as V.22, assumed the connection between two computers was mostly analog; newer standards like V.90 achieve higher speeds by assuming the connection is at least partly digital.

If you use the Windows operating system, you don't normally need to worry about how your modem communicates: it's all done automatically for you. But you can get your modem to send extra control commands, if you're having problems with it making calls. Using what's known as the AT command language, you can change all kinds of other settings, including the maximum and minimum communication speed, how long the modem will wait before hanging up if the call is not answered, and so on. The exact commands you can use vary from manufacturer to manufacturer and from modem to modem, but a few are usually the same on every modem. For example, sending a command AT m0 almost always switches off the modem's loudspeaker so you don't get that irritating, electronic, handshaking chit-chat blasting out at you at the start of every session!

Different kinds of modem

A pair of dialup modems

Photo: A pair of dialup modems. On the bottom, our typical 56K dialup modem. On top, there's a 56K credit-card-sized PCMCIA modem for use in a laptop. The laptop card modem has no loudspeaker, LED indicator lights, or other advanced features but, in other respects, works the same way. It takes its power from the laptop's PCMCIA connection and needs no external power supply.

A dialup connection to an ISP uses circuit switching, just like an ordinary phone call. But if you're using broadband to get a faster connection, you'll use your phone line in an entirely different way, using a data-handling technique called packet switching—and you'll need an entirely different kind of modem. (Read more about circuit and packet switching in our article about the Internet.) If you want to use broadband (packet switching) on a cellphone network, you'll need yet another kind of modem (known as an HSDPA modem).

If you link to the Internet without using a telephone line, either by using a wired ethernet connection or Wi-Fi (wireless ethernet), you won't need a modem at all: your computer sends and receives all its data to and from the network in digital form, so there's no need to switch back and forth between analog and digital with a modem.

Dialup modems have another handy feature: they can communicate with fax machines at high speed. That's why they're sometimes called fax modems. If you have fax software on your computer, you can use your modem to fax out word-processed documents and receive incoming faxes.

What are the parts inside a modem?

Lift the lid on a dialup modem and this is what you'll find inside:

Photo showing the component parts inside a modem

  1. On/off button: Spring-loaded switch turns the power on and off.
  2. Capacitors: Have a variety of jobs to do in a modem, including smooth out current peaks. (See our article on capacitors for more on how they work.)
  3. Volume control: Controls the loudspeaker volume.
  4. Loudspeaker: Relays what's happening on the phone line as your modem dials. Read more about loudspeakers.
  5. Modem chip: Modulates (add digital information to the outgoing telephone signal) and  demodulates (separate the digital information from the incoming signal).
  6. Other chips: Control modem chip and other components.
  7. Microphone: Allows you to send your own voice down the phone line. Discover how microphones work.
  8. Serial connection: Connects the modem to your computer's serial (RS-232) port. Newer modems connect to the USB port instead.
  9. Microphone socket: Connects an external microphone so you can record messages in higher quality than if you use the built-in microphone.
  10. Telephone sockets: Connect your modem to a phone socket with a standard (RJ11) telephone cable. There's a second socket where you can plug a telephone handset into your modem. This lets you to use your phone through the modem when your computer's not already using the line.
  11. Power input: Connects the modem to an external power supply unit (electricity transformer) to your modem.
  • Tweet

Find out more

On this website




For richer technical details, patents are always worth a look. Here are a few examples:

Sponsored links

If you liked this article...

Atoms Under the Floorboards book cover

You might like my new book, Atoms Under the Floorboards: The Surprising Science Hidden in Your Home, published worldwide by Bloomsbury.

Please do NOT copy our articles onto blogs and other websites

Text copyright © Chris Woodford 2008, 2015. All rights reserved. Full copyright notice and terms of use.

Follow us

Rate this page

Please rate or give feedback on this page and I will make a donation to WaterAid.

Save or share this page

Press CTRL + D to bookmark this page for later or tell your friends about it with:

Cite this page

Woodford, Chris. (2008/2015) Modems. Retrieved from [Accessed (Insert date here)]

More to explore on our website...

Back to top