You are here: Home page > Science > Materials science

Aerogel thermal insulation acting as a barrier between a gas flame and some wax crayons, by NASA.

Materials science

by Chris Woodford. Last updated: February 21, 2016.

Why do plastic rulers shatter when you flex them while metal ones simply bend? How come you can twist a paperclip two or three times without it breaking but not twenty or thirty times? Why do some cars go rusty faster than others? How do astronauts survive in space without getting boiled by the Sun... or frozen by the lack of it?

These are the kinds of questions that orbit the minds of materials scientists—arguably some of the most important people on Earth. Why are they important? Because from the moment you get up (woken by an alarm clock built around a tiny crystal of ceramic quartz) to the time you go to bed (snoozing soundly on cotton or synthetic-fiber sheets), every single thing you do involves materials of one kind or another. Could we survive without materials? No! When you remember that materials provide everything from the clothes we wear and the food we eat to the energy we use for cooking and keeping warm, it's obvious that civilized human life is impossible without them.

Photo: Miracle material? Look closely at this picture and you'll see a ghostly blue square sitting just underneath the wax crayons: it's a small piece of aerogel, the world's lightest solid. Aerogel is an amazing heat insulator, and here it's protecting the crayons from the blazing heat of the flame. Although discovered decades ago, aerogel has proved very difficult to manufacture as a practical material, so most people have never heard of it and it's yet to make a big impression on the world. Photo by courtesy of NASA Jet Propulsion Laboratory (JPL).

Is it "materials science" or "materials technology"?

An iPod Touch touchscreen.

Before we go any further, it'll help to be clear what we mean by "materials science."

Science is all about making observations and doing experiments to form and test theories of how our world works; technology means using science in a practical way to solve everyday problems. Materials are technological almost by definition: who needs materials that have no obvious use? Yet there's almost no such thing as a "useless material"—and even some of the strangest materials invented in laboratories, which seemed pretty useless to begin with, have often turned out to have amazing applications later on. (Super-strong Corning® Gorilla® Glass, used in touchscreens, ever-sticky adhesive that lines the backs of Post-it® Notes, and nonstick Teflon® are three good examples of materials that found uses no-one imagined them having.)

What, then, do we mean by materials science? From stone and bronze to steel and concrete, materials are useful for a particular purpose because they behave in a certain way under certain conditions: they have particular qualities, which we call their properties. Understanding these properties is what materials science is all about. Where our modern age differs from earlier periods of history is in having tools that allow us to turn materials inside out: unlike people who lived hundreds or thousands of years ago, we can explain the useful properties of different materials by peering inside them with microscopes, X rays, and all kinds of other neat techniques to inspect their atomic, molecular, or (in the case of once-living things) cellular structure. Just as science provides the foundations for technology, so materials science (understanding the inner structure of materials) helps us to advance materials technology (developing materials that are useful in different situations).

Photo: Material difference: Ordinary glass is far too weak and brittle to use on a phone, while toughened glass is too thick and heavy. What if we could make light but tough glass that was strong enough to survive everyday knocks and scrapes? That's the basic idea behind the Gorilla® glass used in touchscreens. Originally called Chemcor, and developed by Corning in 1962 as a flat safety glass for windshields, it failed to achieve commercial success until cellphones with touchscreens started to use it over 40 years later. What was once something of a dud material has now become one of Corning's most lucrative products!

Why do we use one material instead of another?

Look round the room where you are now and quickly list the materials you can see. What do you notice? You can probably see metals, woods of various kinds, glass windows, and colorful plastics, as well as soft furnishings in rugs, cushions, and (of course) the clothes you're wearing. You might not spot some of the more subtle materials such as composites (generally ceramics or plastics combined with other materials), laminates (composites made from flat sheets bonded together), and alloys (metals mixed with other metals and nonmetals).

The right material

What do you notice about the materials around you? For everything we need to do, we've found materials that are very well-suited to the job (and often very ill-suited to other jobs). So in buildings, we choose materials that are hard, strong, durable, waterproof, and good at retaining heat; when it comes to furnishings, we prefer quite different materials that are soft, flexible, colorful, and reasonably hard-wearing. Although some materials have many uses, and it's often possible to swap one material for another, it's hard to imagine a house built out of wool, or clothes made from glass!

A partly constructed building, showing the steel framework, the concrete floor, and the brickwork being added.

Leaving aside textiles, what sorts of properties do we look for in everyday materials? Think about the materials we use in buildings and structures. Glass, iron, wood, and plastics are generally solids, but in buildings they do different jobs and behave in very different ways. The most important consideration is the way a material responds to forces, known as its mechanical properties. Building materials need to withstand different types of forces that squeeze them (putting them into compression), stretch them (putting them into tension), or twist them (shearing them). Most buildings have to do little more than withstand gravity; some have to be designed to cope with more extreme forces such as earthquakes and hurricanes. Mechanical properties are part of the physical properties of a material. Other physical properties include whether materials conduct heat and electricity, whether they let light pass through them, and how they age or weather (do they rust like iron, rot like wood, or degrade in sunlight like certain plastics?).

Photo: Building materials like the steel (gray bars), concrete (white floor), and brick (red-brown blocks) you see here are designed to help a building balance forces, but they also have to withstand the weather, usually over a period of decades—or even longer—with as little maintenance as possible.

The best compromise

Mechanical properties are also important in the materials we use for transportation: airplanes, space rockets, trucks and cars have to be made from strong materials both to withstand the forces they experience during acceleration and deceleration and to protect the occupants in case of an accident. But transportation materials illustrate another really important principle of how we choose and use materials: almost always we have to compromise. You could make an airplane out of super-strong steel, but then it might be too heavy to take off, or it might use too much fuel to be economical. That's why aerospace designers are just as likely to use strong but lightweight alloys made from aluminum or titanium, as well as composite materials. Although cars have traditionally been made from metals, some are made from composites such as fiberglass, which offer a compromise between strength, weight, and cost, and from lighter aluminum and titanium alloys.

Smart cars are made from composite materials

Photo: Materials science on the move: "smart" cars are built from various different composite materials and plastics, making them lighter and more energy efficient than steel cars but still safe and strong.

The same goes for every other use of materials: there's always an element of compromise. Gasoline is a brilliant way to power a car because, per unit of its weight, it holds more energy than almost any other widely available substance—but it makes air pollution and it's relatively expensive, so it's another case of "materials compromise." We could make everlasting shoes out of steel, but they'd be incredibly heavy and uncomfortable. Or we could make them out of amazingly comfortable cotton and wool, but then they wouldn't last very long. Instead, we use durable, flexible, and relatively comfortable materials such as leather and plastics—usually a good compromise between comfort, cost, and durability.

The local solution

In our modern age of jet planes and container ships, it's easy to transport materials anywhere in the world in a matter of days or weeks. In theory, that means we can use any material we want to use anywhere we might like to use it. Historically, that wasn't always the case. Although some materials (such as wood, iron, and coal) are common throughout the world, others (such as the oil that still powers much of the planet, the lithium we use in rechargeable batteries, and the uranium used to fuel nuclear energy plants) are available only in certain places. The huge diversity of building styles and architecture around the world is the best illustration of how people have used local materials to solve their problems. In Scandinavia, where wood is cheap and readily available, there are many timber-framed buildings. In Asian countries such as Vietnam, bamboo is widely used to make everything from bridges and houses to furniture and water pipes. Making things from plastics is the opposite approach to using local materials; we can make synthetic plastics in chemical plants anywhere on the planet. That's why modern plastic objects feel culturally and geographically neutral: they don't occur naturally anywhere on Earth and they have no obvious links to any particular country or region.

Why do materials....?

Thinking scientifically about the inner structure of materials can help us understand why they behave as they do...

Top: Elasticity in action: a rubber band returns to shape. Bottom: Plasticity in action: a paper clip doesn't return to shape.

Why can you bend a paperclip only a few times before it breaks?

The repeated stresses and strains lead to what's called metal fatigue, which happens when tiny cracks inside a metal gradually grow into bigger ones, until the whole thing snaps in half. When you bend a paperclip first one way and then another, you're subjecting it to giant deformations (changes in shape), much bigger than the ones most everyday metal objects experience.

Why does rubber stretch even though it's a solid?

Rubber is made from long-chain molecules, called polymers, which are normally all scrunched up. When you stretch a rubber band, you straighten the molecules and pull them apart, so the rubber gets longer. When you let go, cross-link bonds between the polymers help to snap them back into place. This is what makes an elastic material such as rubber (one that returns to its original shape and size) different from a plastic material (one that changes shape but doesn't go back exactly to how it was), which includes most metals as well as most plastics.

Photo: Materials in motion: Elastic materials change shape but return to their original shape; plastic materials change shape but don't go back again. This is why you'll find metals often described as "plastic." Confusingly, some plastics are so hard and inflexible that they're not plastic at all!

Why do metals conduct electricity but plastics don't?

Metals are generally solids and inside they have a regular crystalline arrangement of atoms, like ping-pong balls packed into a box. Some of the electrons from the atoms are free to move throughout the whole crystal structure, carrying heat and electricity all the way through it. In plastics, there are no free electrons to move through the structure and carry electricity. This also explains why metals feel cold to the touch but plastics usually feel warm, even if they're the same temperature. A metal conducts heat in a similar way to electricity so, as you touch it, it draws heat from your body and makes your hand feel cold. Plastics don't have free electrons to conduct heat so they don't draw heat from your body as efficiently; that's why a piece of plastic feels warmer than a piece of metal even if it's at the same temperature.

Why can you snap a plank of wood but not stretch or squeeze it?

Wood is an example of what we call an anisotropic material, which means it has different mechanical properties in different directions. Why? Trees are much stronger if you apply a force in the same direction as the grain (vertically up and down the trunk) than across the grain (horizontally through the trunk)—simply because they grow that way. That's why wood works better in vertical poles (when it's in compression) than in horizontal beams and planks (when it's in tension). It's much easier to saw or chisel wood parallel to the grain than across (perpendicular to) it, which gives us the popular saying about tricky things "going against the grain." When you snap a plank, you're applying a force parallel to the grain where the wood is weakest; when you try to stretch or squeeze a plank, you're applying a force in the direction of the grain where the wood is strongest.

Inspecting a metal part for signs of cracks using ultraviolet light.

Why do laminates come apart?

A laminated material, such as a wooden floor, is made from flat sheets of different materials bonded together in layers with adhesives. A typical coaster (drip mat) on a coffee table might have a thin cellophane upper surface, then a thin piece of paper or card printed with a design of some kind, and a thicker cork base. Laminates come apart where one material joins another, for two common reasons. First, heat makes different materials expand by different amounts so, as a laminate warms up, one material might expand more than another, cracking the adhesive and making the layers come apart. Second, water might penetrate between the layers, weakening the adhesive or soaking into one of the layers and making it expand more than the others, again cracking it apart.

Photo: Testing, testing! Materials can fail at any time, which can have disastrous consequences if they're part of something like an airplane jet engine. But how do you test materials for cracks you can't see? Here, an engineer is washing an airplane part in a fluorescent dye then shining ultraviolet light on it. The dye lodges inside any cracks, which then show up in the light. Photo by Dana Hill courtesy of US Air Force.

What are the different types of materials?

There are thousands of materials available to us. There are almost 100 naturally occurring chemical elements, for example, and we can combine these in a virtually infinite number of ways to make compounds. How do we make sense of all the materials in our world? Generally, we tend to classify materials by the way they occur or are produced, by their properties, or by their uses. However, there's no perfect way to classify materials and it's worth remembering one thing: the only reason to classify materials is to help us understand them better (materials science) and use them more effectively (materials technology).

Memory chip from a USB flash memory stick

Natural and synthetic materials

The simplest way to classify materials is by splitting them into ones that occur naturally and ones that are artificially made (synthetic). The natural materials are the ones our human ancestors discovered and put to use first and they include such things as stone, bone, wood, bamboo, and natural textiles such as wool. Midway between natural and synthetic materials are things that have to be taken from nature (typically dug from the ground) and processed in various ways. That gives us ceramics such as brick and clay, relatively easy-to-find metals such as iron and copper, and also slightly more complex alloys like bronze (an alloy of copper and tin) and steel (an alloy of iron and carbon, sometimes with other materials). We could also put vulcanized rubber, made from latex, into this category. Synthetic materials are much newer: plastics, for example, have only been widely available since the middle of the 20th century and composites (which often use plastics as one of their components) are also relatively new.

Photo: Natural or synthetic, materials are what we make of them. This computer memory chip is an example of an integrated circuit made from silicon. Although silicon is one of the world's most common chemical elements, found in sand, you have to do quite a lot of things to it before you can turn it into a computer. So does it qualify as a natural material or a synthetic one? It's a bit of both!

Materials with different properties

It's also common to classify materials by their properties, such as when we divide things into metals and nonmetals. Generally metals are hard, shiny solids that conduct heat and electricity, and they're both malleable (they can be shaped) and ductile (they can be pulled into wires). Although it might seem useful to talk about metals and nonmetals, it's also very misleading because metals are very different from one another. Mercury, for example, is a liquid metal, while sodium is a metal so soft you can cut it like butter! And while it's true that most metals conduct electricity, some (such as silver and gold) are much better than others (such as aluminum and lead)—and some nonmetals (carbon, for example) conduct electricity very well too.

Materials with different uses

It makes much more sense to classify materials according to the way we use them. That gives us building materials (such as iron and steel, glass, and wood), energy materials (from coal and gasoline to peat and uranium), materials for transportation (including high-tech aerospace alloys and composites), electronics materials (metals and semiconductors), medical materials (such as plastics used in artificial limbs), and textiles we use for clothes, furnishings, and so on. One of the interesting things we see from classifying materials this way is the incredible versatility of certain materials that can be used in many different ways. Wood is probably the best example, used in everything from building boats and houses to fueling fires, making furniture, and even serving as early artificial legs! Plastics get their name from a word that means flexible—and their uses are just as diverse.

USAF public domain photo of bulletproof glass

Our material future

Materials are the building blocks from which humans have fashioned civilization. Think of the Stone Age, Bronze Age, and Iron Age (the three great periods of history based on tools made from these amazing materials) and then consider our modern age of plastics, alloys, and composites—a time when we've mastered every natural material Earth has to offer and invented quite a few new materials all of our own. What could be more important than materials and the things we do with them?

We're constantly facing new challenges that lead scientists and engineers to develop new materials. Among the latest developments are biomimetic materials (ones that "mimic" the best features of biological materials, found in nature) and self-healing plastics and composites (materials that automatically repair themselves after damage). And how about "smart" materials that can change their properties as they need to, such as energy-absorbing plastics (which instantly harden to protect something fragile) and thermochromic materials (which change color when you heat them)? Other exciting areas of future research include the development of new semiconductors that will allow computers to keep on developing at the same furious pace (in line with a trend called Moore's law) and new prosthetic materials that open up the possibility of entirely artificial human bodies!

Photo: What materials will we need in future? Before personal firearms became commonplace, no-one could possibly have imagined we'd need a material like bulletproof glass, shown here (a laminate of glass and plastic that slows bullets down by absorbing their energy); until plastics were developed in the 20th century, composite materials that could do things like this weren't really possible. Who knows what materials future humans will need? Picture courtesy of US Air Force.

Find out more

On this website

We have a much longer list of materials articles.

Other websites




More advanced

For younger readers



Sponsored links

If you liked this article...

Atoms Under the Floorboards book cover

You might like my new book, Atoms Under the Floorboards: The Surprising Science Hidden in Your Home, published worldwide by Bloomsbury.

Please do NOT copy our articles onto blogs and other websites

Text copyright © Chris Woodford 2012. All rights reserved. Full copyright notice and terms of use.

Post-it is a registered trademark of 3M.
Teflon is a registered trademark of E. I. du Pont de Nemours and Company.
Corning and Gorilla are registered trademarks of Corning Incorporated.

Follow us

Rate this page

Please rate or give feedback on this page and I will make a donation to WaterAid.

Share this page

Press CTRL + D to bookmark this page for later or tell your friends about it with:

Cite this page

Woodford, Chris. (2012) Materials science. Retrieved from [Accessed (Insert date here)]

More to explore on our website...

Back to top