You are here: Home page > Materials > Lubricants

Lubricating safety strip on a Gillette razor


  • Tweet

by Chris Woodford. Last updated: November 23, 2016.

When a car screeches round a bend at high speed, the only thing that stops it skidding is the friction between its tires and the road—a force that can be several times greater than its weight. Here friction is working like a kind of glue that sticks the car to the road, but it's not always so helpful. Under the hood, friction is busily wearing out the engine parts—it's one of the main ways that a car wastes energy. That's why we need lubricants: substances that fight friction and allow moving machine parts to slide past one another more smoothly.

Photo: Lubricants crop up in some unusual places. Safety razors like this usually have some lubricant on them so they move easily over your face. The lubricant is the green strip at the top. When the razor gets wet, it turns into a greasy cream that makes it glide more smoothly over the hairy skin that's heading toward the blades.

What is friction?

Sparks from a circular saw

Photo: Friction makes the sparks when the teeth on this power saw start to bite. Photo by Eduardo Zaragoza courtesy of US Navy.

Friction is caused by forces between two things when they touch, like when you drag your foot along the sidewalk and feel and hear the surfaces scuffing together. It doesn't matter how smooth things look or feel—peer at them under a microscope and you'll see they're always rougher in close up. When you drag your foot on the ground, the jagged bits on the two surfaces snag against each other, slowing you down and stealing your energy. The rougher the touching surfaces, the more friction there is, the harder you have to work, and the more energy you waste.

Two people slide down an icy hill on a sledge.

Friction also happens because of a microscopic "gluing" effect when two things touch. When a gecko climbs a wall, millions of tiny hairs on the base of its feet are touching the wall at the same time. Molecules on the tips of each hair attract to molecules on the outer surface of the wall with a microscopic amount of what's called van der Waals force—a really weak kind of electromagnetism. Although each hair provides only a smidgen of magnetic force, there are so many hairs on the gecko's foot that, together, they can provide enough force to support its weight. Read more about this in our article on adhesives.

Photo: What makes ice slippery? Scientists used to explain it this way: as you move over the ice, you compress it and make it melt, creating a smooth, wet layer that acts as a lubricant, helping you slide over the otherwise rough surface. Unfortunately, that attractively simple explanation has now been called into question—and one current theory is that ice is slippery because it has a permanent lubricant coating that grows thicker or thinner according to the temperature. Whatever the answer, a question like "Why is ice slippery?" can be explained in many different ways, at many different levels of complexity, as Richard Feynman points out in this excellent video. Photo by Chantel M. Clayton courtesy of US Navy.

How does a lubricant work?

There are hundreds of moving parts whirring away in your car's engine and gearbox. Sometimes it can feel like you're driving a clock! The pistons pump up and down in the cylinders, the crankshaft spins, the gears race round at top speed. Every one of these things rubs against something else as it moves—making noise, losing energy to friction, and gradually wearing out. The way to reduce friction between two moving parts is to lubricate them (coat them in oil)—but how does lubrication actually work?

How unlubricated surfaces rub through friction while lubricated surfaces glide past one another.

Solids are materials that have a built-in resistance to changing shape, whereas liquids can flow. Think of the difference between ice (which just sits there in a lump) and water (which flows easily as you pour it). If you put a liquid like oil between two solid gears, it will shift about and change its shape as much as it needs to, cushioning the microscopic bumps between the gears as they mesh together and reducing the friction between them.

This little illustration shows you what's happening. On top, you can see two unlubricated surfaces (maybe they're the teeth of two meshing gears) moving roughly past each other, slowed down by friction. They might look smooth to your eyes, from a distance, but they're rough at an atomic level and one surface drags horribly against the other, wasting energy and wearing out the materials (1). At the bottom, we can see how a lubricant helps in two different ways: it smooths and cushions the bumps between the two surfaces (2). Also, because it's a liquid, it can easily change shape and flow. Ideally, it will flow in perfect layers, as shown here, in what's known as laminar flow. The layer of lubricant near the top surface will move toward the left while the layer near the bottom surface will move toward the right. The layers will slide freely past one another, so helping to reduce friction (3).

What makes a good lubricant?

Although some lubricants (like the slim strip on the razor in our top photo) are used at reasonably cool and constant temperatures, many have to work in engines and machines at very high temperatures. Car engines use thick, syrupy oils for lubrication because these stay liquid at over 300°C (570°F), which is hot enough to survive the kind of temperatures that engine parts heat up to. Water would quickly evaporate and turn to steam in those conditions but it also makes metal parts turn rusty, so it's not really a good choice for a lubricant.

Often, lubricants have to work well at a range of temperatures. For example, in a chilly country like Iceland or Switzerland, car axle lubricants need to do their job both when the car is just starting from cold and when it's been running for a while. In practice, that could mean a wide range of operating temperatures from −10°C to 100°C (−14 to 212°F). Lubricants are much like any other substance: the colder they get, the harder, more solid, and less fluid (more viscous or "treacly") they become. Sometimes, that means they work less effectively: the poorer performance of lubricants at lower temperatures is one of the reasons why engines and transmissions are less efficient before they've properly warmed up.

A range of substances from high to low viscosity: peanut buttle, wood glue, liquid soap, and water.

On the other hand, the hotter you make a lubricant, the thinner and less viscous (more runny) it becomes. Although that might sound like a good thing, it isn't always. On heavy-duty machines working slowly at high power, you need a thicker, more durable layer of lubrication, and a low-viscosity lubricant isn't going to be helpful. The thinner a lubricant becomes, the more likely a machine is to seize up. Usually, there's a critical temperature above which lubricants no longer form a strong and effective coating that sticks to the parts they're touching, performance falls off dramatically, and seizure becomes an alarming possibility.

Photo: Viscosity: As the operating temperature of a machine rises, a lubricant's viscosity falls: it becomes thinner and more runny. With a big enough temperature rise, the viscosity of a heavy oil or grease could change dramatically, from high (that of treacle or peanut butter), through medium (wood glue), then medium-low (liquid soap), to very low (water). For some machines, thicker and more viscous lubricants will be more effective than thinner and less viscous ones; for other machines, the opposite might be true.

So designing lubricants involves a careful study of the conditions under which particular engines and machines operate, including speeds, powers, and maximum and minimum temperatures, and a balance between performance, efficiency, and durability. In case you're wondering, the science of friction, lubrication, and surface wear is called tribology. So next time you meet a tribologist on your travels, you'll know exactly what to talk about!

Greasing machine gears. A ball bearing taken to pieces

Photo: Two different approaches to lubrication. 1) Applying thick grease will keep these gears turning for a few more weeks or months. Photo by Angel Roman-Otero courtesy of US Navy. 2) Ball bearings like these help to reduce friction in moving machine parts. There's an outer metal ring fastened to one part of the machine and an inner metal ring fastened to another part. The two rings are separated by a circular collar (here colored reddish-brown) with holes inside it. The collar can rotate freely on metal balls that rest in the holes. Bearings are usually lubricated to keep them running smoothly. Photo courtesy of NASA Glenn Research Center (NASA-GRC).

How do self-lubricating machines work?

A patent diagram of a self-lubricating differential gear developed by General Motors in the 1950s.

You have to keep machines lubricated if you want to keep them working. The only trouble is, we expect most machines to go on working all the time. Every minute that a factory machine is stopped for maintenance is a minute of lost production that costs money. Some machines keep on working month after month with no downtime at all. They simply never stop! And it's not just machines that suffer from this problem: if you own a car, you don't expect to have to stop it every few miles to squirt oil into the engine and gearbox. How, then, can we keep our machines oiled up and in tip-top shape?

Lots of complex machines are designed to lubricate themselves automatically—and here's a common example. The diagram you can see here shows two different views of the differential gear from a car (the gear at the back that connects the propeller shaft, taking power from the engine and gearbox, to the rear axle and the back wheels). The top picture shows a plan view (looking down from above) while the bottom picture shows a side view (as you'd see staring from the side of a car at one of the rear wheels). I've colored the gear wheels red and you can see how the differential essentially converts spinning movement in one direction (along the length of the car) into spinning movement at ninety degrees (along the width of the car).

This particular differential was designed by J. Arthur Nyland for General Motors in the mid-1950s. Apart from the gears, you'll see two other key components that I've shaded green and blue. The green areas show a fluid pump that's driven by the red gears. As the gears spin, the green pump spins too. That makes it draw up lubricant from a reservoir (blue), which is then pumped out through narrow pipes onto key parts inside the differential gearbox. The entire differential unit is sealed and, as the gears spin at high speed, any excess lubricant is thrown off, eventually dripping back into the reservoir for reuse.

Artwork: A self-lubricating differential gear developed by engineer J. Arthur Nyland for the General Motors Corporation in the 1950s. You can read more about it in US Patent #2,840,186: Lubrication System. Artwork courtesy of US Patent and Trademark Office.

  • Tweet
Sponsored links

Find out more

On this website




Please do NOT copy our articles onto blogs and other websites

Text copyright © Chris Woodford 2008, 2016. All rights reserved. Full copyright notice and terms of use.

Follow us

Rate this page

Please rate or give feedback on this page and I will make a donation to WaterAid.

Save or share this page

Press CTRL + D to bookmark this page for later or tell your friends about it with:

Cite this page

Woodford, Chris. (2008/2016) Lubricants. Retrieved from [Accessed (Insert date here)]

More to explore on our website...

Back to top